
Query by Example

NextAge Consulting
Pete Halsted

110 East Center St. #1035
Madison, SD 57042

pete@thenextage.com
www.thenextage.com

www.thenextage.com/wordpress

http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress

Table of Contents

Table of Contents
BSD 3 License
NextAge Consulting - Pete Halsted
General Information

Software Design Consulting
Adding to a Browse (HFilter or SQL Mode)
Adding to a Browse (SQL Advanced Mode without Timer)
Adding to a Browse (SQL Advanced Mode with Timer)
Special Notes Concerning Large Datasets, Queries and Query Parameters.
Special Notes Concerning QBE Mode and Files vs Queries
Database Table

QBEQuery
QBEFieldValue
Users

Project Code
Properties

AdditionalConditions
AllowEmptySearchConditions
ExcludeHiddenColumns
ExclusionList
InitialSQLStatement
JoinStyle
LoadInterval
ProgressBarControl
QBEMode
RecordsPerPage
SQLConnection
StartEmpty
StatusMessageControl
TheTableControl
UseTimer

Methods
BuildSearchConditions
DeleteSavedQuery
ExecuteSavedButton
GetSQLStatementForTable
InitializeSavedQueries
LoadSaveQuery
QBEButton

StopButton
TableInitialize
UpdateTableRow
ValidateConditionCombo

EQUATES
ModeHFilter
ModeSQL
ModeSQLAdvanced
JoinStyleInner
JoinStyleOuter
JoinStyleWhere

Code Bricks
Special Properties

QBEQueryFile
QBEQueryQBEQueryIDField
QBEQueryUserIDField
QBEQueryQueryNameField
QBEQueryTableControlField
QBEQuerySavedQueryField
QBEFieldValueFile
QBEFieldValueQBEQueryIDField
QBEFieldValueItemField
QBEFieldValueCaptionField
QBEFieldValueConditionField
QBEFieldValueFirstValueField
QBEFieldValueAnd_OrField
QBEFieldValueSecondValueField
UsersFile
UsersUserIdField
UsersLoginName
SilentErrors
TheSystemLogClass
UserIdVarialbe

Control Templates
QBEButton
QBESavedQueries
QBETimed

Windows
Change Log

1.0 - January 9, 2013
1.0 - Not Released

BSD 3 License

Copyright (c) 2012, NextAge Consulting (www.thenextage.com)
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

● Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

● Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

● Neither the name of the NextAge nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NextAge Consulting - Pete Halsted
Pete Halsted has been developing custom business management applications for small to
medium-sized companies, since 1987. His focus is on client/server, distributed and cloud based
development utilizing WinDev, WebDev, and PostgreSQL. Pete is a Clarion Certified Developer
with 25 years in the industry, has spoken at several Developers conferences, and provided
Developer training and mentoring on a one on one basis. He has served companies both large
and small as Project Manager, Lead Architect, Lead Developer and Chief Technology Officer.
Pete tours the country full-time by motor home with his wife and dog, enjoying the freedom
provided by cloud based technologies. Pete is available for Project Management, Custom
Design, Development, Training, and Speaking assignments. For more information please visit
www.thenextage.com or follow his blog at www.thenextage.com/wordpress

General Information

http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress

The Query by Example class provide a method of allow end users to filter their data using a
simple QBE interface. It allows the them to save their queries for later reuse as well.

A QBE are three basic modes of QBE HFitler, SQL, and Advanced SQL. Hfilter and SQL work
very similarly except one is accomplishing the task via Hfilter, and one uses an SQL statement
with HExecuteSQLQuery. The one advantage to the SQL method is the Multiple File Fields will
be expose to the QBE interface See the special notes section for additional information.

The Advanced SQL method allows complete control of the SQL statement. This requires a
table that is set to be filled by programming. With the Advanced SQL mode the data can be
fully loaded on initialization or using a Timer function so that the user is able to interact with the
browse while records are still loading.

Software Design Consulting
The QBE class was original inspired and some of the base code comes from the training
material provided by Glenn Rathke of Software Design Consulting. We highly recommend his
training materials to anyone using the WX suite of tools.

Adding to a Browse (HFilter or SQL Mode)
1. Add the QBE Button control template to the window. There shouldn’t be any need to

change the code behind these controls but I will document them here so you know what

they are doing. By Default when you add a control template to a window WinDev names
it something like CTPL_NoName1, if you rename it to TPL_QBE, it will match the reset
of the code bricks and control templates and there will be fewer changes to make.

a. Start New Session Button
■ QBE.QBEButton()

b. StatusMessage Static
■ No code, the class will update this static to provide feedback about the

current activity of the QBE
2. Use the QBE Setup Code Brick to add the setup code to the window Global Declarations

Process.
a. QBE is QueryByExample

■ Instantiates a copy of the Query By Example class
b. QBE.QBEMode =QueryByExample.ModeHFilter

■ The filter mode to use either ModeHFilter or ModeSQL
c. QBE.ExcludeHiddenColumns =True

■ Should Hidden Columns be excluded from the QBE interface?
d. QBE.ExclusionList = ""

■ A comma delimited list of fields to exclude, this property is optional.
Useful if you have hidden primary key fields etc in the selection list but
don’t need to have in the QBE selection screen

e. QBE.TheTableControl = TBL_xxx..FullName
■ Where Tbl_xxx is the name of the table control, the order of the properties

should be set the same as they are listed here otherwise the class will
perform some setup actions more than once, which will not cause any
functional issues but could slow down the initial screen load.

f. QBE.AllowEmptySearchConditions = False
■ Can the user issue a QBE with no conditions?

g. QBE.StatusMessageControl = TPL_QBE.StatusMessage..FullName
■ The name of the status control from the control template

h. QBE.StartEmpty =False
■ Should the table control be loaded initially or shown empty until the user

starts a QBE session. Handy for tables with a large number of records.
i. QBE.AdditionalConditions = ""

■ Additional conditions to be applied. These conditions can not be
overridden by the user. Handy to force the table to only show records for
the current users, etc. This property is optional.

3. In the Initialization of the Table control process code place the following line
a. QBE.TableInitialize()

■ Initializes the table and fills it based on the QBE settings

Adding to a Browse (SQL Advanced Mode without
Timer)

The advanced mode allows gives you complete control over the SQL statement uses for the
selection of records. This requires that the table be set to be filled by programming, and for you
to specify the Initial SQL statement. The class includes a “utility” function to assist with this.

Start by defining the table as you would normally using tables (not queries) and multiple table
fields as needed. One the table is defined as desired. Place the following lines of code in
the global declarations of the procedure and run the application. This will provide you will a
message containing the resulting SQL statement as well as put it in the clipboard. You can use
this statement as the basis for creating your statement, just be certain the the selection order
and field types match those of the table when done.

QBE is QueryByExample
QBE.QBEMode =QueryByExample.ModeSQL
QBE.TheTableControl = TBL_xxx..FullName
QBE.GetSQLStatementForTable()

The code brick includes the above lines to assist you. Once you have captured the SQL
statement, the above lines can be removed, set the table control to be filled by programming
and then follow the rest of the instructions to setup the actual browse.

1. Add the QBE Button control template to the window. There shouldn’t be any need to
change the code behind these controls but I will document them here so you know what
they are doing.

a. Start New Session Button
i. QBE.QBEButton()

b. StatusMessage Static
i. No code, the class will update this static to provide feedback about the

current activity of the QBE
2. Use the QBE Setup Advanced Mode Code Brick to add the setup code to the window

Global Declarations Process. There will be a few properties not used unless using the
TimerLoad Feature.

a. QBE is QueryByExample
i. Instantiates a copy of the Query By Example class

b. QBE.QBEMode = QueryByExample.ModeSQLAdvanced
i. The filter mode must be set to advanced.

c. QBE.ExcludeHiddenColumns =True
i. Should Hidden Columns be excluded from the QBE interface?

d. QBE.ExclusionList = ""
i. A comma delimited list of fields to exclude, this property is optional.

Useful if you have hidden primary key fields etc in the selection list but
don’t need to have in the QBE selection screen. With Advanced mode
this should be the name of the column not the name of the database field.

e. QBE.InitialSQLStatement = [
This SQL statement created above and tweaked as desired.
]

f. QBE.TheTableControl = TBL_xxx..FullName
i. Where Tbl_xxx is the name of the table control, the order of the properties

should be set the same as they are listed here otherwise the class will
perform some setup actions more than once, which will not cause any
functional issues but could slow down the initial screen load.

g. QBE.AllowEmptySearchConditions = False
i. Can the user issue a QBE with no conditions?

h. QBE.StatusMessageControl = TPL_QBE.StatusMessage..FullName
i. The name of the status control from the control template

i. QBE.StartEmpty =False
i. Should the table control be loaded initially or shown empty until the user

starts a QBE session. Handy for tables with a large number of records.
j. QBE.AdditionalConditions = ""

i. Additional conditions to be applied. These conditions can not be
overridden by the user. Handy to force the table to only show records for
the current users, etc. This property is optional.

3. In the Initialization of the Table control process code place the following line
a. QBE.TableInitialize()

i. Initializes the table and fills it based on the QBE settings

Adding to a Browse (SQL Advanced Mode with Timer)
The advanced mode with timer is exactly the same as without except that it loads the records a
page at a time, returning control back to the user immediately allowing them to interact with the
table while it is still loading records. This is very handy will working with large database tables.
The initial setup is the same with or without the Timer, there are just a few extra properties to
set, the instructions that follow are only for the additional properties you should refer to the
without Timer section for the general setup of the SQL Advanced Mode.

1. Add the QBETimed control template to the window. There shouldn’t be any need to
change the code behind these controls but I will document them here so you know what
they are doing.

a. Start New Session Button
i. QBE.QBEButton()

b. Stop QBE Button
i. QBE.StopButton()

c. StatusMessage Static
i. No code, the class will update this static to provide feedback about the

current activity of the QBE
d. ProgressBar

i. No code, the class will update this progress bar with a record count as it
loads records with it interval of the timer.

2. Use the QBE Setup Advanced Mode Code Brick to add the setup code to the window
Global Declarations Process. Below a the specific properties used with the TimerLoad
Feature.

a. QBE.UseTimer =True
i. Uses the timer feature

b. QBE.ProgressBarControl = TPL_QBE.ProgressBar..FullName
i. The name of the progress bar from the control template.

c. QBE.LoadInterval = 1
i. The number of seconds between each Page load, default is 1 second

d. QBE.RecordsPerPage = 50
i. Number of records to load with each Page. Default is 50.

3. In the Initialization of the Table control process code place the following line
a. QBE.TableInitialize()

i. Initializes the table and fills it based on the QBE settings

Special Notes Concerning Large Datasets, Queries
and Query Parameters.
When you get near a 100,000 records (or you are doing a remote connection to the database)
my testing using the actual file for the table control source versus a project query shows some
advantages to using the actual files. This is because of the nature of the QBE class.

The QBE class is designed to work Query parameters. I am not sure how parameters would
be support and still keep the QBE code as generic and easy to implement as it currently is. I
welcome input and suggestions for others.

When not using Query parameters, my testing seems to indicate that HF actually builds the
entire dataset and then filters that with anything specified via an HFilter or a SQL statement. So
when the records sets gets larger this will cause a delay as the Query is built.

For instance in my testing a table with over a million records. When I used a project query, even
with the option set to start with an empty data set, the table still took between 10-20 seconds to
completely load and allow the user to interact.I believe this is because the Query is being built
with the full record set and then filtered from there.

When using the actual file for the table control source, I did not see this slow down. Because it
appears with an actual file the filter is being performed by the server.

Special Notes Concerning QBE Mode and Files vs
Queries
The QBE Mode of HFILTER or SQL are both supported for table control that have a source of
a file or a project query. The nature of embedded queries does not not allow them to be used in
SQL mode. Unless you are working with large record sets this likely will not make a difference.

One other note about QBE Mode and Query vs File. If you are using an actual File as the table
source and QBE mode of HFILTER, and you have a field included in the table that is using a
multi-file link to show a value from another file, that column will not be available via QBE. Since
HFILTER is only applied to one file, it naturally can only be applied to the primary file of the
table.

However if you were to use the QBE mode of SQL, then the field would be available because
in SQL mode the QBE class is generating an actual SQL statement and can generate a where
clause using field from more than one file.

The other option for this situation would be to create a Query that would “flatten” the files into
one query. Which would again allow the field to be expose to QBE. Which method you use
will be a matter of personal preference and the size of the dataset based on the information
concerning large datasets and queries mentioned elsewhere in the document..

Database Table
The class has been written in a generic fashion that allows the file and field names to be set via
properties if desired. The class also uses Hxxxx commands for all file access, meaning that the
class should work with any database that WX supports. The suggested definition for the files
follows. If you do not use this definition you will have to use the associated properties to point to
the correct values (See the Special Properties).

QBEQuery
Holds the saved queries, queries can either be global or specific to a user.

● QBEQueryID
○ Automatic ID

● UserID - Primary key to the User Table
○ Integer

● QueryName - Name of the saved Query
○ Text (50)

● TableControl - The name of the table control managed by this query
○ Text (100)

● SavedQuery - The actual filter or SQL statement for the Query.
○ Text Memo

QBEFieldValue
Holds the individual field conditions for a saved query.

● QBEFieldValueID
○ Automatic ID

● QBEQueryID - Link to the QBE Query File
○ Integer

● Item- The Field Name
○ Text (50)

● Caption - Caption of the field (Provides a user friendly name)
○ Text (50)

● Condition - The Condition dropdown value (Equal, not equal, etc) is translated to a
number.

○ Integer
● FirstValue- First value to check

○ Text (50)
● And_Or - And or Or for some conditions

○ Text (50)
● SecondValue - Second Value to check if And or Or condition

○ Text(50)

Users
While not technically a file of the Query by Example, it does use the user table to retrieve the
user name to show for saved queries, you table will likely have several other fields but will need
at least these two fields, remember you can use the special properties to override the default
names.

● UserID
○ Automatic ID

● LoginName- The users Name
○ Text (50)

Project Code
The QBE class is instantiated for each browse it is used on, however there are a few global
properties that should be set in your project initialization code, so these values will be the same
for all instances of the class. If you are using the special properties to change the File or field
names that should be done here as well.

● QueryByExample.UserIDVariable = “GLO.UserID”
○ The project variable that stores the User Id

● QueryByExample.SilentErrors = False
○ If set to True Error Messages in the class will not be displayed. The default value

is False. Note: If using the System Log class the error will still be logged even if
an error is not displayed

● QueryByExample.TheSystemLogClass = SysLog
○ Pointer to the System Log class for logging errors.

Properties
Note: Private Properties are not documented.

AdditionalConditions
This allows you to specify a condition that they user doesn’t have access to and can not
override. For instance if you want to place QBE on the customer table, but some users are
only allowed to see a subset of customers, the condition for that subset could be added via the
AdditionalConditions property and the user would not be able to query records that they should
not have access to.

AllowEmptySearchConditions
By default,If the user doesn’t specify any conditions the class does not perform a data fetch.
This is to avoid loading a large number of records unnecessarily. This property will allow the
data fetch to be performed without any conditions being specified. Default is False

ExcludeHiddenColumns
If True then hidden columns are not available to QBE or note. Default is True

ExclusionList
This is a comma delimited list of field names that you don’t want to to be available for the user to
select for QBE Conditions. Note: if you have a multiple file browse and only include a field name
in the ExclusionList than that field would be excluded from all files, however if you prefix the field
name with the file name in the exclusion list (User.UserID) than only the field from that file will
be excluded if it exists in more than one file.

InitialSQLStatement
Complete Select statement including joins that will be used as the basis for the statements
generated when QBE Mode is SQLADVANCE

JoinStyle
When using Multiple File columns in the table, you can specify how you want the joins to be
generated. Choices are INNER, OUTER, WHERE. The default is INNER.

LoadInterval
Only valid when UseTimer is True. The number of seconds between each record load. Default
is 1

ProgressBarControl
Only valid when UseTimer is True. The name of the progress control to display the progress of
the timed load.
QBEMode

The type of Filtering Applied (HFILTER,SQL, or Advanced) Default is HFILTER

RecordsPerPage
Only valid when UseTimer is True. The number of records to read with each record load.
Default is 50

SQLConnection
Name of the Connection to use when using SQL QBEMode. When specified the
SQL statements generated by QBE will be executed against the connection using
HQueryWithoutCorrection. If not specified, the queries will be ran using the non connection
syntax of HExecuteSQLQuery which does not allow HQueryWithoutCorrection.

StartEmpty
Boolean value, determines if the table control is initially loaded or empty when the screen
opens. Default is False

StatusMessageControl
The name of the control that displays the QBE status.

TheTableControl
The name of the table control being managed.

UseTimer
Only valid for SQLAdvanced mode. When enabled data is loaded via a timer loop, allowing the
user to interactive with the table control, while records are still loading.

Methods
Note: Private Methods are not documented.

BuildSearchConditions
Pulls all of the QBE settings together and creates Filter and / or SQL statement, called by the
execute button of the QBE window and should not need to be called directly.

DeleteSavedQuery
Deletes a selected saved query, should not need to be called directly.

ExecuteSavedButton
Loads the Search Conditions with a saved query, used by the QBE window and should not need
to be called directly.

GetSQLStatementForTable
This method is not intended for use in production. It is used to assist you with creating an
SQLADVANCED QBE browse. If you create the browse using standard files as the source,
then run the application calling this method and it will give you the InitialSQLStatement that will
match the browse. You can then convert the browse to be filled by programming, and tweak the
InitialSQLStatement as needed, making sure that the field types and order remain intact.

InitializeSavedQueries
Populates the SavedQueries array for the current table

LoadSaveQuery
Populates the QBE window with a selected saved query, should not need to be called directly.

QBEButton
Initiates a QBE Search Session, Displays QBE Window, and then manages the filtering of the
browse. Generally called via one of the Control Templates.

StopButton
Only valid when UseTimer is True. Stop the current timer and halts loading records.

TableInitialize
Call should be placed in the Initialization Code of the table control. This method handles all the
logic of applying the filter and resetting the table. Can also be called from other areas, passing
in a condition to manually start a QBE session.

UpdateTableRow
Used by the Browse Form Manager to update the browse after an update, if SQL Advanced
mode is being used.

ValidateConditionCombo
Used to validate the Condition Drop Combo on the QBE window, should not need to be called
directly.

EQUATES
Equates are provided to assist with setting some of the properties

ModeHFilter
QBEMode set to use HFilter technique. Default Value of QBE Mode

ModeSQL
QBEMode set to use SQL technique

ModeSQLAdvanced
QBEMode set to use the Advanced SQL technique that allows you full control of the SQL
statement.

JoinStyleInner
Set JoinStyle to create Inner Joines. Default Value of JoinStyle

JoinStyleOuter
Set JoinStyle to create Outer Joins

JoinStyleWhere
Set JoinStyle to use “old style” joins via the Where clause

Code Bricks
QBE - QBE Setup
Instantiates a copy of the Query by Example class and sets it up.

QBE - QBE Setup Advanced Mode
Instantiates a copy of the Query by Example class and sets it up for Advanced Mode with Timer

Special Properties
The below properties can be used to change the default file name and field names used.
They are global properties and should be set in the project initialization code using the
QueryByExample.PropertyName syntax.

QBEQueryFile
The name of the QBEQuery file. Default = “QBEQuery”

QBEQueryQBEQueryIDField
Default ="QBEQueryID"

QBEQueryUserIDField
 Default = "UserID"

QBEQueryQueryNameField
Default = "QueryName"

QBEQueryTableControlField
Default = "TableControl"

QBEQuerySavedQueryField
Default ="SavedQuery"

QBEFieldValueFile
Default = "QBEFieldValue"

QBEFieldValueQBEQueryIDField
Default = "QBEQueryID"

QBEFieldValueItemField
Default = "Item"

QBEFieldValueCaptionField
Default ="Caption"

QBEFieldValueConditionField
Default = "Condition"

QBEFieldValueFirstValueField
Default = "FirstValue"

QBEFieldValueAnd_OrField
Default = "And_Or"

QBEFieldValueSecondValueField
Default = "SecondValue"

UsersFile
Default = "Users"

UsersUserIdField
Default = "Users.UserID"

UsersLoginName
 Default = "Users.LoginName"

The following properties are global properties that should be set in the project code so thier
value will be the same for all instances of the class.

SilentErrors
If set to True Error Messages in the class will not be displayed. The default value is False. Note:
If using the System Log class the error will still be logged even if an error is not displayed.

TheSystemLogClass
Pointer to the System Log class for logging errors.

● The System Log class is another Open Source class available from NextAge. The
Security class will perform without it. However if you don’t not want to include the
System Log class in your project you will have to comment out the related lines of the
class. Unfortunately WX does not provide the ability to optionally compile code based
on the existence of another class. As long as the class is include in your project you will
not have compile errors and the class calls will be skipped, however if you remove the
System Log class from your project, you will have compile errors in the Security class.

UserIdVarialbe
The project variable that stores the User Id

Control Templates
QBEButton
Adds a QBE Search Button to a screen, the button makes a call to QBE.QBEButton()

QBESavedQueries
Adds a drop list to a QBE browse that allows the user select select a predefined query. There
is a template variable CanViewAllQueries that can be overridden to show all queries versus just
the current users.

QBETimed
Adds a QBE Search and Stop Button to a screen and progress bar, this version should be used
with the UserTimer SQL Advanced Mode

Windows
Win_Find_Records_QBE
This is the primary QBE interface with the user will configure their QBE request. This is based
on the original work provided by Glenn Rathke’s training examples, but has been modified to
be SQL specific and perform background data loads. If you want to use QBE with Hyper File or
with direct data loads, I suggest purchasing his training materials.

Win_Saved_QBE
Called from Win_Find_Records_QBE, and provides an interface to allow users to save their
queries for future use.

Change Log

1.0 - January 9, 2013
Initial Release

1.01 - January 16 , 2013
1. Fixed direct reference to file in DeleteSavedQuery Method
2. Added some methods used by Browse Form Manager to refresh the table after an

update
3. Resolved issue with Additional Conditions not being applied if no search conditions

supplied
4. Resolved issue with Get Record Count not handling From as first word of line
5. Resolved issue with Advance SQL where clause not being correct if there are

ambiguous field names

