
Business Rules

NextAge Consulting
Pete Halsted

110 East Center St. #1035
Madison, SD 57042

pete@thenextage.com
www.thenextage.com

www.thenextage.com/wordpress

 

http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress


Table of Contents
Table of Contents
BSD 3 License
NextAge Consulting - Pete Halsted
General Information
Setting up the Style Sheet
Setting up Business Rules for a Window
Setting Default Rules
Validation Code
Special Note for Internal Windows
Other Requirements
Database Table

BusinessRules
Project Code
Properties

TheSecurityClass
EditControlPlainStyle
EditControlRequireStyle
StyleSheet
SilentErrors
TheSystemLogClass

Methods
AddControl
ApplyBusinessRules
DefaultRule
LoadRules
ValidateAllFields
ValidateField

Code Bricks
BRAdd  - Business Rules Add Control
BRApply - Business Rules Apply Business Rules
BRSetup - Business Rules Setup
BRDefaultSec - Business Rules Setup Default Field Level Security
BRDefaultReq - Business Rules Setup Default Required
BRDefaultVal - Business Rules Setup Default With Validation
BRAllValidate - Business Rules Validate All Fields
BRValidate - Business Rules Validate Field

Special Properties
BusinessRulesFile
BusinessRulesIDField
FieldNameField



BrushColorField
FontColorField
RequiredField
RequiredStyleField
CategoryField
AccessLevelField
StateField
ValidationCodeField
ControlArray

Special Methods
DeleteBusinessRule
FetchBusinessRule
GetWindowName
GetWindowNumber
UpdateBusinessRule

Control Templates
Business Rule Editor Button

Windows
Win_BusinessRuleEditor

Change Log
1.0 - January 16, 2013

 



BSD 3 License
Copyright (c) 2012, NextAge Consulting (www.thenextage.com)
All rights reserved.
 
Redistribution and use in source and binary forms, with or without modification, are permitted 
provided that the following conditions are met:
 

● Redistributions of source code must retain the above copyright notice, this list of 
conditions and the following disclaimer.

● Redistributions in binary form must reproduce the above copyright notice, this list of 
conditions and the following disclaimer in the documentation and/or other materials 
provided with the distribution.

● Neither the name of the NextAge nor the names of its contributors may be used to 
endorse or promote products derived from this software without specific prior written 
permission.
 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, 
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED 
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING 
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NextAge Consulting - Pete Halsted
Pete Halsted has been developing custom business management applications for small to 
medium-sized companies, since 1987. His focus is on client/server, distributed and cloud based 
development utilizing WinDev, WebDev, and PostgreSQL. Pete is a Clarion Certified Developer 
with 25 years in the industry, has spoken at several Developers conferences, and provided 
Developer training and mentoring on a one on one basis. He has served companies both large 
and small as Project Manager, Lead Architect, Lead Developer and Chief Technology Officer. 
Pete tours the country full-time by motor home with his wife and dog, enjoying the freedom 
provided by cloud based technologies. Pete is available for Project Management, Custom 
Design, Development, Training, and Speaking assignments. For more information please 
visitwww.thenextage.com or follow his blog at www.thenextage.com/wordpress

http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress
http://www.thenextage.com/wordpress


General Information
The Business Rule Class was created to provide a uniform method of enforcing business rules 
and data validation in an application. Furthermore it provides the ability to adjust and extend 
the business rules from the end user interface without recompiling the application. Allowing 
either a “super user” of the application to control the business rules, or the developer to ship 
different business rules tables, to different clients that make the same executable behave 
differently for each client. Default Rules are setup at design time, and written to the database 
when the application is ran, however these default rules can then be edited to change their 
behavior. Clearing the Rules table would have the effect of resetting all the rules to their default 
configuration. Validation errors are displayed using Balloon Tips, therefore the NextAge Balloon 
Tip class is required. 
 
 

 



Setting up the Style Sheet
The class uses the change style command to switch the style of edit controls so that you can 
use a special style for required fields. Setting up this extra style is very easy. Once you create 
your project and have selected a skin do the following to create the two styles needed. The 
below steps will show you how to create a style similar to the one I use, which will show a Red 
border around edit controls that are required when they are not selected. You can of course get 
as creative as you want in configuring the Required Style versus your Normal Style.

Note: If you are using the SCM you may have to check out your project style sheet prior to doing 
the following.
 

1. Edit the properties of an edit control that is using the “normal” style you will be using in 
your project.

2. Chose the Style tab.
a. This will display the style properties and to the right a box that lets you chose a 

different style, or disassociate the control from the style.
3. Press the Choose Button

a. This will show you a list of “Project Styles” and “Skin Styles”



4. Press the Duplicate Button

a. This will create a new Project style identical to the current style of the control



5. Select the Style just created and press the modify button

6. On the general tab rename the style to something that makes sense to you, such as 
“NormalEdit”

7. Press the Green Checkmark to save the changes to the style.
8. Press the Duplicate Button again to make another copy of the style.

a. You will be modifying this style  to be used for required edit fields.
9. Select the style just created and press the modify button



10. On the general tab rename the style to something that makes sense to you, such as 
“RequiredEdit”

11. Change to the Style tab
12. Select Input area from the Element drop down
13. The border option should say “Image (9 image mode)”
14. Press the Right Arrow button next to border option

a. This will tell you the name of the image file being used to display the borders of 
the edit box.

15. Make a copy of the image file from step 14



16. Edit the copy in your favorite image editor and change the first box to be a red border. 

This will cause Required fields to show with a Red border on the screen when they are 
not selected.

17. Change the image file name in step 14, to the file you created in step 15 and 16.

18. Press the Green Checkmark to save the changes to the style.

 



Setting up Business Rules for a Window
The recommend method for using the Business Rules class is to setup a Window Template to 
base all of your project windows on. This allows you to included the Business Rule Editor Button 
and a SetupDefaultRules procedure on every window. If not you will need to manually add them 
to the window.
 

1. Make sure the Business Rule Editor Button Template is the first item initialized by using 
the Windows->Edit the Initialization Order function.

  
2. If working with an Internal Window be sure to see the Note concerning Internal Windows 

and make the proper adjustments.
3. In the Initialization Event of the Window, call the ApplyBusinessRules method, this will 

apply any formatting or field level security setting for any rules on this Window. The 
BRApply Code Brick contains this code.

a. BR.ApplyBusinessRules(TPL_BusinessRuleEditor.WindowNumberFo

rBr)

i. The control template contains the WindowNumberForBr variable, that 
was initialized when the button was initialized (this is why the button must 
be initialized first).  This variable was returned by the Class call in the 
template and is the internal reference that the class uses to manage the 
fields and rules for this window.

4. For every control that will be managed by the Business Rules Class, a few lines of code 
need to be added, there are code bricks for all, and the code is very generic and should 
not need to be edited. 

a. Initialization Event
i. BR.AddControl(MySelf..FullName,TPL_BusinessRuleEditor.

WindowNumberForBr)

1. This method is what adds the control to the class and allows it to 
be managed. As long as the Business Rule Editor Button template 
is consistently named it shouldn't need to be changed and can be 
populated with the BRAdd Code Brick

b. Exit Event



i. IF NOT BR.ValidateField(MySelf..FullName,False) THEN

ReturnToCapture(MySelf)

END

1. This code actually performs the validation of the business rule. 
Again this code is generic and shouldn’t need to be changed. It 
can be populated with the BRValidate Code Brick

2. When adding a button to the Business Rules for use with Field 
Level Security, there is not exit event since there will be not 
validation performed.

c. Whenever Modified Event
i. For certain controls, such as Checkboxes, the validation should take 

place whenever the control is modified. For these fields place the Validate 
code in the Whenever Modified Event instead of the Exit Event. The code 
is identical in either case.

5. Prior to the Saving the record, Validate all fields with the following code:

BadField is string = 

BR.ValidateAllFields(CTPL_BusinessRuleEditor.WindowNumberForBr)

IF BadField <> "" THEN

SetFocus({BadField,indControl})

RESULT False

END

RESULT True

This code forces the validation of all the controls for the window, if any of them fail focus 
is returned to that control. The BRValidateAll code brick contains this code. The supplied 
code returns a True or False, which is the expected result of the 
BeforeUpdateProcedure of the Browse Form Manager Class. Depending on where this 
code is placed and the programming style of the application it may need to be changed 
slightly.

6. Setup any Default Rules Desired
a. Default Rules are exactly what they sound like, they are the default rule for a 

control. They are used to initially populate the Business Rule database. 
b. There are a few different forms of Default Rules that can be set, see the Setting 

Default Rules section for details
 
Note: Once a record exists in the Business Rule table it is used to regardless 
of any changes you make to the code. If you change the code and want the new 
default applied you must delete the record from the table so that it will be created 
with the new code. This behaviour is what allows Business Rules to be set or 
overridden at runtime. 

 
Note: It is possible to add table columns to the Business Rule class by placing the 
same code in the events of the column. The Required Style will not be applied, but 



field level security to Hide or Disable the control as well as any validation code, if 
the table is editable, will be executed.



Setting Default Rules
Default Rules are exactly what they sound like, they are the default rule for a control. They are 
used to initially populate the Business Rule database. Once a record exists in the Business Rule 
table it is used to regardless of any changes you make to the code. If you change the code and 
want the new default applied you must delete the record from the table so that it will be created 
with the new code. This behaviour is what allows Business Rules to be set or overridden at 
runtime.
 
There are a few different styles of Default Rules and code bricks exists for each to assist with 
the syntax of the calls. They all call the same method, DefaultRule, its just a matter of which 
parameters are passed or not.
 

1. BRDefaultReq - Business Rules Setup Default Required
a. This sets up a field as being required and displays the required style (Red Box) 

around the field
2. BRDefaultVal - Business Rules Setup Default With Validation

a. Includes custom validation code.  See Validation Code
3. BRDefaultSec - Business Rules Setup Default Field Level Security

a. Setups up Field Level security for a control. This of course only works if you are 
also using the Security Class.

4. The Possible Parameters to the DefaultRule Method are:
a. ControlName

i. The name of the control to place this Rule on.
b. BrushColor

i. Changes to background color of the control
c. FontColor

i. Changes to text color of the control
d. Required

i. Boolean True makes the control required. 
e. RequiredStyle

i. Boolean True will use the Required Style when the control is required. 
See Setting Up the Style Sheet.

f. ValidationCode
i. Code to be executed for Validation. See Validation Code

g. Category
i. The Security Category Used for field level security

h. AccessLevel
i. The Access Level required for field level Security

i. HiddenorDisabled
i. If the security check fails the control is either eHidden (1) or eGrayed (2)

 



Note: Validation and required code uses “Soft Validation”, meaning if the value in the 
control is modified it is checked. This means the validation code is not executed if the 
user just tabs through the field. When the ValidateAllFields method is called it does 
“Forced Validation” and executes the validation code of all fields. This style of validation 
allows the user to navigate as they desire through the screen as long as when they save 
the record all fields pass validation.

 



Validation Code
Nearly any WX code can be place in the Validation Code, including referencing local variables 
and procedures of window and global variables and procedures of the application. This code 
can be as elaborate as desired. The only requirement is that if the validation passes the code 
must return an empty string. If the code returns a string, that string will be displayed as a balloon 
tip error on the field that failed validation.  
 
Note: It may be helpful to test the validation code as standard WX code prior to moving it 
to a default business rule. 

 



Special Note for Internal Windows
Since Internal Windows are not true windows but become part of the window they are used in, 
functions like mywindow return the name of the parent window, not of the Internal Window that 
you are currently working in. For this reason there is a little bit of special code that much be 
done for Internal Windows. In the Initialization Event for the Business Rule Editor Button you 
must manually set the name of the window before the code executes:
 
WindowNameForBR ="InternalWindowName"

ExecuteAncestor

 

By Placing the code before the Execute Ancestor it executes before the initialization code from 
the control template.

Other Requirements
This class uses the Balloon Tip Class to display the popup validation errors. The Balloon Tip 
class is another Open Source Class available from NextAge.



Database Table
The rules are stored in a database table. Therefore you must have a table configured for 
this purpose. The class has been written in a generic fashion that allows the file name and 
field names to be set via properties if desired. The class also uses Hxxxx commands for all 
file access, meaning that the class should work with any database that WX supports. The 
suggested definition for this file follows. If you do not use this definition you will have to use the 
associated properties to point to the correct values (See the Special Properties).

BusinessRules
○ BusinessRulesID

■ Automatic ID

○ FieldName

■ Text (100)

○ BrushColor

■ Integer

○ FontColor

■ Integer

○ Required

■ Boolean

○ RequiredStyle

■ Boolean

○ Category

■ Text (20)

○ AccessLevel

■ Integer

○ State

■ Integer

○ ValidationCode

■ Text Memo

 



Project Code
The class should be initialized in your project initialization code. There is a code brick to assist 
with this (BRSetup)
 

1. BR is BusinessRules

a. Instantiates an instance of the class global for the entire project.
2. BR.StyleSheet = "project.wdy"

a. The Style Sheet used by the project. This is the style sheet discussed above.
3. BR.EditControlRequireStyle = "RequiredEdit"

a. The style to use for required edit controls. See the instructions above.
4. BR.EditControlPlainStyle = "NormalEdit"

a. The style to use for edit controls that are not required. See the instructions 
above.

5. BR.TheSecurityClass = SEC

a. If you are using the Security Class it should be initialized first, and this line lets 
the Business Rule class know that it can make calls into the security class.

6. BR.TheSystemLogClass = SysLog
a. Pointer to the System Log class for logging errors. (See Notes under Properties)

7. BR.SilentErrors = False
a. Optional If set to True Error Messages in the class will not be displayed. The 

default value is False. Note: If using the System Log class the error will still be 
logged even if an error is not displayed.

8. BR.LoadRules()

a. Loads the Business Rules into an array so all future access is not database 
driven to improve performance.

 



Properties
Note: Private Properties and Members are not documented.
 
TheSecurityClass
Pointer to the Security Class for Field Level Security

● The Security class is another Open Source class available from NextAge. The class will 
perform without it. However if you don’t not want to include the Security class in your 
project you will have to comment out the related lines of the class. Unfortunately WX 
does not provide the ability to optionally compile code based on the existence of another 
class. As long as the class is include in your project you will not have compile errors 
and the class calls will be skipped, however if you remove the Security class from your 
project, you will have compile errors in the Business Rules class.

 
EditControlPlainStyle
Style to be used for edit controls that are not required.
 
EditControlRequireStyle
Style to be used for required edit controls.
 
StyleSheet
The name of the style sheet that contains the EditControlPlainStyle and EditControlRequireStyle

SilentErrors
If set to True Error Messages in the class will not be displayed. The default value is False. Note: 
If using the System Log class the error will still be logged even if an error is not displayed.

TheSystemLogClass
Pointer to the System Log class for logging errors.

● The System Log class is another Open Source class available from NextAge. The 
Default Manager class will perform without it. However if you don’t not want to include 
the System Log class in your project you will have to comment out the related lines 
of the class. Unfortunately WX does not provide the ability to optionally compile code 
based on the existence of another class. As long as the class is include in your project 
you will not have compile errors and the class calls will be skipped, however if you 
remove the System Log class from your project, you will have compile errors in the 
Default Manager class.

 



Methods
Note: Private methods are not documented.
 
AddControl
Tell the class to manage the business rules for the control. If you do not add the control then it 
will be completely ignore by the class and will not be displayed in the Business Rule Editor.
 
ApplyBusinessRules
Initializes a Windows and apply any display settings, such as changing the style of required 
fields and hiding or disabling fields based on the Field Level security.
 
DefaultRule
Sets up a default rule for a control. See detailed instructions above.
 
LoadRules
Loads all rules from the database into an array, to improve performance of the class.
 
ValidateAllFields
Force validates all controls for a window being managed by the class.
 
ValidateField
Validates a control being managed by the class. Can be called with soft validation or forced 
validation.



Code Bricks
BRAdd  - Business Rules Add Control
Used to add a screen control to the Business Rule Manager, place in the Initialization Process 
of the control
 
BRApply - Business Rules Apply Business Rules
This will apply any formatting or field level security setting for any rules on the Window. It should 
be called from the window’s Initialization Process
 
BRSetup - Business Rules Setup
Setups up the Business Rules class, should be in the Project Initialization code.
 
BRDefaultSec - Business Rules Setup Default Field Level Security
Setups up Field Level security for a control
 
BRDefaultReq - Business Rules Setup Default Required
This sets up a field as being required and displays the required style (Red Box) around the field
 
BRDefaultVal - Business Rules Setup Default With Validation
Includes custom validation code. See Validation Code
 
BRAllValidate - Business Rules Validate All Fields
Validates all Fields of the window, should be called prior to saving the record. Note this code 
brick has additional code related to the Browse Form Manager, if you are not using that class it 
can be removed.
 
BRValidate - Business Rules Validate Field
Performs the validation of the a field via the Business Rule Manager, place in the Exit Event of 
the field, for checkboxes place in the Whenever Modified Event instead.

 



Special Properties
The below properties can be used to change the default file name and field names used.

BusinessRulesFile
The name of the Business Rules file. Default = “BusinessRules”
 
BusinessRulesIDField
Default = "BusinessRulesID"
 
FieldNameField
Default = "FieldName"
 
BrushColorField
Default "BrushColor"
 
FontColorField
Default "FontColor"
 
RequiredField
Default "Required"
 
RequiredStyleField
Default "RequiredStyle"
 
CategoryField
Default =  "Category"
 
AccessLevelField
Default =  "AccessLevel"
 
StateField
Default = "State"
 
ValidationCodeField
Default = "ValidationCode"
 
 



The below Properties although public is intend for use by the Business Rule Editor Window and 
you should not need to use them directly.
 
ControlArray
An array that contains all of the information about the controls being managed by the class. 



Special Methods
The below methods are public methods but they are intended to only be called by the Business 
Rules Editor Window or the Business Rule Editor Button Template, you should not need to call 
them directly in any other code.
 
DeleteBusinessRule
Completely deletes a rule from both the array and the database. Called from the delete button of 
the Business Rule Editor.
 
FetchBusinessRule
Retrieves a business rule from the array. 
 
GetWindowName
Retrieves a the window name based on the number assigned to it by the class. 
 
GetWindowNumber
Retrieves a the window number assigned to a window by the class. If the window has not been 
added to the class it will be added. Called from the Business Rule Editor Button templates 
initialization code, you should not need to call directly.
 
UpdateBusinessRule
Updates the business rule in both the array and the database. Called from the Business Rule 
Editor Window, you should not need to call directly.
 
 



Control Templates
Business Rule Editor Button
Adds the edit button to the screen and initializes the class for the window. Be sure to use 
the Windows->Edit the Initialization Order function and set the button as the first item to be 
initialized. It assumes that a local procedure called SetupDefaultRules exists. You must create 
this procedure even if you are not setting up any default rules for the window. The easiest way 
to do this is the Create a Base Window Template to be used for creating all your windows, and 
on this template include both the button template and the empty SetupDefaultRules procedure. 
The code of this template includes a call to the security class to hide the button if the user does 
not have security rights. You can change this call as required.

 



Windows
While not technically part of the class the below window is included in the NextAge Open 
Source Application that can be use as is or modified as you desire.
 
Win_BusinessRuleEditor
This window allows the business rules to be edited at runtime. The window is included in the 
NextAge Open Source application and can be imported into your application for this purpose. 
It can be reskinned and modified as you desire, however you should take great care that none 
of the logic that deals with the class is damaged. Note: the category combo uses a query to 
display all the possible categories, the queries used are declared in the NextAge Open Source 
application or you can create your own of course.
 

 



Change Log

1.0 - January 16, 2013
Initial Release
 


